114 research outputs found

    Thermally stable molecules with large dipole moments and polarizabilities and applications thereof

    Get PDF
    Disclosed are fused ring bridge, ring-locked dyes that form thermally stable photorefractive compositions. The fused ring bridge structures are .pi.-conjugated bonds in benzene-, naphthalene- or anthracene-derived fused ring systems that connect donor and acceptor groups. The donor and acceptor groups contribute to a high molecular dipole moment and linear polarizability anisotropy. The polarization characteristics of the dye molecules are stabilized since the bonds in the fused ring bridge are not susceptible to rotation, reducing the opportunity for photoisomerization. The dyes are compatible with polymeric compositions, including thermoplastics. The dyes are electrically neutral but have charge transport, electronic and orientational properties such that upon illumination of a composition containing the dye, the dye facilitates refractive index modulation and a photorefractive effect that can be utilized advantageously in numerous applications such as in optical quality devices and biological imaging

    Process of changing the refractive index of a composite containing a polymer and a compound having large dipole moment and polarizability and applications thereof

    Get PDF
    Fused ring bridge, ring locked dyes that form thermally stable photorfractive compositions. The fused ring bridge structures are .pi.-conjugated bonds in benzene-, naphthalene- or anthracene-derived fused ring systems that connect donor and acceptor groups. The donor and acceptor groups contribute to a high molecular dipole moment and linear polarizability anisotropy. The polarization characteristics of the dye molecules are stabilized since the bonds in the fused ring bridge are not susceptible to rotation, reducing the opportunity for photoisomerization. The dyes are compatible with polymeric compositions, including thermoplastics. The dyes are electrically neutral but have charge transport, electronic and orientational properties such that upon illumination of a composition containing the dye, the dye facilitates refractive index modulation and a photorefractive effect that can be utilized advantageously in numerous applications such as in optical quality devices and biological imaging

    Wavelength Reuse for Scalable Multicasting: A Cross-Layer Perspective

    Get PDF
    We examine the feasibility of ultrahigh-scale datacenter multicasting by simultaneously taking into account the choice of architecture, modulation, and coding. Our Monte Carlo simulations indicate the dominant impact of in-band crosstalk on the throughput performance

    Stimulated Raman Scattering Microscopy with a Robust Fibre Laser Source

    Get PDF
    Stimulated Raman scattering microscopy allows label-free chemical imaging and has enabled exciting applications in biology, material science and medicine. It provides a major advantage in imaging speed over spontaneous Raman scattering and has improved image contrast and spectral fidelity compared to coherent anti-Stokes Raman scattering. Wider adoption of the technique has, however, been hindered by the need for a costly and environmentally sensitive tunable ultrafast dual-wavelength source. We present the development of an optimized all-fibre laser system based on the optical synchronization of two picosecond power amplifiers. To circumvent the high-frequency laser noise intrinsic to amplified fibre lasers, we have further developed a high-speed noise cancellation system based on voltage-subtraction autobalanced detection. We demonstrate uncompromised imaging performance of our fibre-laser-based stimulated Raman scattering microscope with shot-noise-limited sensitivity and an imaging speed up to 1 frame s−1s^{−1}.Chemistry and Chemical Biolog

    Dynamic Correction of a Distorted Image Using a Photorefractive Polymeric Composite

    Get PDF
    We demonstrate, for the first time, the dynamic correction of aberrated images in real-time using a polymeric composite with fast response times. The current novel experimental design is capable of restoring a phase aberrated, image carrying laser beam, to nearly its original quality. The ability to reconstruct images in real-time is demonstrated through the changing of the aberrating medium at various speeds. In addition, this technique allows for the correction of images in motion, demonstrated through the oscillatory movement of the resolution target. We also have demonstrated that important parameters of the materials in the study such as response times, diffraction efficiencies and optical gains all retain high figures of merit values under the current experimental conditions. © 2004 Optical Society of America

    Synthesis of high-T_g hole-transporting polymers with different redox potentials and their performance in organic two-layer LEDs

    Get PDF
    Organic hole transport materials are used in organic LEDs, where they substantially improve device performance if placed as a hole transport layer (HTL) between the anode and the electroluminescent layer (EL). Soluble polymeric hole transport materials with high glass transition temperatures are of particular interest, because they allow for efficient device fabrication through spin casting of the HTL, and high glass transition temperatures have been found to improve thermal and long-term stability of the device. The redox potential of the hole transport material determines the facility of charge injection at the anode/HTL and the HTL/EL interfaces, thus affecting the overall device efficiency. We have synthesized a series of soluble hole-transporting polymers with glass transition temperatures in the range of 130 degrees C to 150 degrees C. The synthetic method allows facile substitution of the hole transport functionality with electron-withdrawing and electron-donating groups, which permits tuning of the redox potential of the polymer. These polymers have been used as HTL in tow-layer devices ITO/HTL/Alq/Mg. The maximum external quantum efficiency increase, if the redox potential is changed to facilitate reduction of the hole transport material at the HTL/EL interface. Electron-deficient derivatives show higher external quantum efficiencies. The device stability, however, follows the opposite trend
    • …
    corecore